An approximate version of Sidorenko’s conjecture

نویسندگان

  • David Conlon
  • Jacob Fox
  • Benny Sudakov
چکیده

A beautiful conjecture of Erdős-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two approaches to Sidorenko’s conjecture

Abstract: Sidorenko’s conjecture states that the number of homomorphisms from a bipartite graph H to a graph G is at least the expected number of homomorphisms from H to the binomial random graph with the same expected edge density as G. In this talk, I will present two approaches to the conjecture. First, I will introduce the notion of tree-arrangeability, where a bipartite graph H with bipart...

متن کامل

An information theoretic approach to Sidorenko’s conjecture

We investigate the famous conjecture by Erdős-Simonovits and Sidorenko using information theory. Our method gives a unified treatment for all known cases of the conjecture and it implies various new results as well. Our topological type conditions allow us to extend Sidorenko’s conjecture to large families of k-uniform hypergraphs. This is somewhat unexpected since the conjecture fails for k un...

متن کامل

Graph norms and Sidorenko’s conjecture

2 Definitions and main results 3 2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Graph norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Schatten-von Neumann classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Hölder and weakly Hölder graphs . . . . . . . . . . . . ....

متن کامل

Sidorenko's Conjecture, Colorings and Independent Sets

Let hom(H,G) denote the number of homomorphisms from a graph H to a graph G. Sidorenko’s conjecture asserts that for any bipartite graph H, and a graph G we have hom(H,G) > v(G) ( hom(K2, G) v(G)2 )e(H) , where v(H), v(G) and e(H), e(G) denote the number of vertices and edges of the graph H and G, respectively. In this paper we prove Sidorenko’s conjecture for certain special graphs G: for the ...

متن کامل

An approximate version of Hadwiger's conjecture for claw-free graphs

Hadwiger’s conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw-free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw-free graph with chromatic number χ has a clique minor of size ⌈23χ⌉.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010